焊接技术在现代工业生产中一直发挥着至关重要的作用。近年来,备受关注的激光锡焊已成为焊接技术领域的一股新力量。今天,kaiyun888注册将深入了解激光锡焊的工艺原理、方法和参数设置,并探索其在各个领域的应用场景。
激光锡焊的工艺原理
激光锡焊的工艺原理主要是利用激光作为加热光源,通过传输光纤与激光焊接头的配合,将激光聚焦于焊接区域。焊接区域吸收激光能量迅速加热熔化焊料,然后停止激光冷却焊接区域,焊料凝固,形成焊点,因为只局部加热焊接区域,整个部件的其他部分几乎不受加热影响,焊接激光照射时间通常只有数百毫秒。非接触焊接对焊盘没有机械应力影响,空间利用率较高。在这个过程中,激光辐射能转换成热能,使锡材迅速熔化,从而完成焊接。
激光锡焊工艺方法及参数设置
激光焊锡的工艺方法和参数设置对焊接质量至关重要。在选择激光锡焊系统时,应考虑激光功率、波长、焦距、焊接速度/时长、温度模式还是功率模式等参数,并根据具体的焊接材料进行相应的调整。在实际焊接中,还需要考虑焊接材料的涂层、表面状态、导热性、透过率和吸收率等因素,以确保焊接点质量的稳定性和可靠性。
1、激光功率
光纤激光自出现以来具有独特的技术特点:光波导传输,灵活与机器人合作,适合大规模生产;使用寿命长,半导体激光经过5万小时循环试验,适合长期连续生产;结构简单,易于生产、组装和维护,与硬光路专业精密组装调试相比,光纤激光生产一般普通人员,生产组装要求低,易于大规模生产;光电转换效率高,普通光纤激光转换效率一般为25-30%(976nm泵浦技术方案光电转化率为40%以上),是CO2的3倍以上,使得运营成本低。
2、光斑大小
光束斑点的大小是激光焊接中最重要的变量之一,因为它决定了功率密度。光束焦点衍射极限光斑的大小可以根据光衍射理论计算,但由于聚焦透镜像差的存在,实际光斑大于计算值。最简单的测量方法是等温度轮廓,即用相纸烧焦,穿透聚丙烯板,测量焦点和穿孔直径。通过测量实践,掌握激光功率和光束作用的时间。
3、料吸收值
激光材料的吸收取决于材料的一些重要性能,如吸收率、反射率、导热率、熔化温度、蒸发温度等,其中最重要的是吸收率。
影响激光束吸收率的因素包括两个方面:一是材料的电阻系数。通过对材料抛光表面吸收率的测量,发现材料吸收率与电阻系数的平方根成正比,电阻系数随温度而变化;其次,材料的表面状态(或光洁度)对光束吸收率有重要影响,对焊接效果有明显影响。
kaiyun888注册激光恒温锡焊系统特点
1.激光加工精度较高,光斑点径最小0.1mm,可实现微间距贴装器件,Chip部品的焊接。
2.短时间的局部加热,对基板与周边部件的热影响最少,可根据元器件引线的类型实施不同的加热规范获得一致的焊接质量。
3.无烙铁头的消耗,不需要更换加热器,实现高效率连续作业。
4.激光加工精度高,激光光斑可以达到微米级别,加工时间/功率程序控制,加工精度远高于传统烙铁。可以在1mm以下的空间进行焊接。
5.多种光路同轴,CCD定位,所见即所得,不需要反复矫正视觉定位。
6.非接触性加工,不存在接触焊接导致的应力,无静电。
7.激光为绿色能源,最洁净的加工方式,无耗品,维护简单,操作方便;
8.进行无铅焊接时,无焊点裂纹。
激光锡焊应用案例分析
1.激光锡焊在汽车电子领域的应用
在汽车电子领域,激光锡焊广泛应用于电子线束、传感器、控制模块等部件的焊接。激光焊接可实现高精度焊接,提高汽车电子产品的可靠性和耐久性。
2.激光锡焊在电流传感器中的应用
在电流传感器领域,激光锡焊接用于连接传感器电极和电路板之间的焊点。激光焊接不仅可以提高焊接接头的可靠性和精度,还可以减少焊接热对传感器的影响,从而提高传感器的性能和稳定性。
3.激光锡焊在光伏新能源领域的应用
在光伏新能源领域,激光锡焊广泛应用于太阳能传感器和逆变器储能单板的制造中。激光焊接可提高逆变器电源管的焊接转换效率和稳定性,减少材料浪费和能耗,优化逆变器尺寸,提高生产效率和经济效益。
总结
激光锡焊作为一种新型焊接技术,具有高效、准确、无损的优点,已广泛应用于许多领域。未来,随着激光技术的不断发展,我相信激光焊接将在更多领域发挥更重要的作用,为工业生产带来更多的便利和贡献。为工业制造业提供更准确、高效、节能的焊接技术。
©Copyright © 2024 Oraylaser.com. All rights reserved. ICP备:鄂ICP备13011549号 copyrighted.
武汉松盛光电 专注于振镜同轴视觉光路系统,光纤精密切割头,单聚焦恒温锡焊焊接头,光斑可调节焊接头,方形光斑焊接头,塑料焊接等激光产品的生产销售及提供激光锡焊塑料焊应用解决方案。